Start of File
We have 11 placeholders, some with failure, some with success.

Intermixed, we have also some “existing” figure and table captions, to test the placeholders get proper initialization for caption indexes.
This template has no IEC styles at all, so it also shows that we use Word defaults correctly.

This template is not used to actually test writing, but only placeholder scanning and replacing.

Note: Since release 01v05, we’ve changed the implementation of scanning and writing Word document from backward to forward, to improve performance, at the cost of more custom code. We then discovered that the Word-specific wildcard search “startUml*.*.endUml” does not return the same result when scanning backward and forward !!! This was the case with the string “(startUml, endUml)”, that we used in IEC61850 templates intro – backward search that we used, correctly did not pick this one as a placeholder, while forward search did select twice: first down to the “endUml” of the next placeholder, plus that “(startUml, endUml)” itself. So, we changed the wildcard expression to “startUml[ADEFLP]*.*.endUml”, to enforce the valid initial letters for placeholder starting tags (Package, Diagram, etc.).
This spec …



<example figure with caption>

Figure 1 – first figure - to test that placeholders below take it into account

Other text.

Table 1 – first table – to test that placeholders below take it into account

	
	

	
	


1) failure (unsupported placeholder)


startUmlDYZ...endUml

2) failure (no such diagram)

startUmlDiagram.Core..endUml
The following shouldn’t be picked as placeholder. Word’s find method gives different results when search is forward and backward!

(startUml, endUml)

3) success

startUmlAttribute.IEC61970CIMVersion.version.endUml
4) failure (missing class name)

startUmlAttribute..version.endUml

5) success

startUmlDiagram.IEC61970.Main.endUml
This spec …



[image: image1.png]Clean Code

makes you @




Figure 2 – second figure - to test that placeholders below take it into account

Other text.

6) success (cannot fail)

startUmlFile..endUml
7) success

startUmlPackage.Core.endUml

8) failure (missing package name)

startUmlPackage..endUml
9) failure (inexisting package name)

startUmlPackage.dummyPackageName.endUml

10) success (cannot fail; we repeat it to ensure we allow for duplicates)

startUmlFile..endUml
Table 2 – first table – to test that placeholders below take it into account

	
	

	
	


11) success

startUmlPackage.Domain.endUml
End of file
